el o]

PHYSICAL REVIEW A

VOLUME 41, NUMBER 4

15 FEBRUARY 1990

Finite-size effects on the characterization of fractal sets:
J(a) construction via box counting on a finite two-scaled Cantor set

Jan Hékansson
Nordisk Institut for Teoretisk Atomfysik, Blegdamsvej 17, DK-2100 Copenhagen @, Denmark
and Institute of Theoretical Physics, Chalmers University of Technology, S-412 96 Géteborg, Sweden

Gunnar Russberg
Nordisk Institut for Teoretisk Atomfysik, Blegdamsvej 17, DK-2100 Copenhagen @, Denmark
(Received 11 September 1989)

We study box counting on finite fractal sets and investigate how to obtain the generalized dimen-
sions and the spectrum of scaling indices with highest possible accuracy. As a model we use a sim-
ple one-dimensional Cantor set for which the f(a) spectrum may be found analytically—the exact
result is compared with the box-counting solution on the finite levels. There is a connection be-

. tween the g value and the size of the boxes giving the most accurate result for the f(a) spectrum on

any finite level.

I. INTRODUCTION

During the last few years it has become clear that most
fractals in nature are so-called multifractals. This means

that the characteristic scaling properties of an object may

vary from point to point. For this reason the Hausdorff
dimension, which has extensively been used as a quantita-
tive measure of the scaling in simple fractal objects, is not
sufficient to characterize a multifractal. The Hausdorff
dimension is only one in a continuum of dimensions, the
Renyi dimensions Dq,1 introduced by Grassberger? and
Hentschel and Procaccia® in order to characterize frac-
tals and strange attractors. In this formalism, D, is iden-
tical to the Hausdorff dimension, while D, and D, are
known -as the information dimension and the correlation
dimension, respectively. A similar characterization is ob-
tained by the spectrum of scaling indices, the f (a) spec-
trum, defined by Halsey et al* The generalized dimen-
sions D, and the f (a) spectrum are related to each other
via a Legendre transformation.

Real fractal objects, like aggregates, show fractal prop-
erties only within a limited length scale interval. Such
finite fractals may consist of a finite number of objects
with finite sizes. The structure becomes nonfractal inside
the single particles as well as outside some typical corre-
lation length. The practical determination of the scaling
properties of an experimentally obtained fractal object
will generally involve box counting on a two-dimensional
image (e.g., a projection, like a transmission electron mi-
crograph of aggregated Co particles’). When partitioning
such an image, the effect of finite particle size will play an
important role for the determination of the f(a) spec-
trum, especially for negative values of g (see below); the
calculation of f(a) for negative q has proven to be a
difficult problem and a straightforward box-counting cal-
culation will yield completely irrelevant spectra.>~® This
is due to the finite resolution and to the fact that the
boxes will not be necessarily centered on particles of the
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fractal; some of them will contain vanishingly small mea-
sure giving unreasonably large contributions as g is taken
to minus infinity (the measure is being raised to the power
of g, see below).

In general, it is not possible to identify single particles
in an observed image. Instead one may define a smallest
“particle” size, or resolution, being an estimate of the size
of the smallest observable single particle, and then create
a new image built up of these “particles.” This procedure
gives a smallest relevant grid size for the box counting;
on the particle scale, each box will completely cover one
particle and thus have a uniform measure. If the image is
digitized there is a natural finest resolution given by the
digitization grid.

A number of digitizations with different grid sizes may
be constructed from an original image in order to create
images with varying degrees of resolution. Alternatively,
new digitizations may be obtained from the original one
by some appropriate construction rule. This will be dis-
cussed for one- and two-dimensional images in a later
work. The basic idea is that by computing a set of (op-
timal) f(a) approximations for different degrees of reso-
lution, an extrapolation beyond the approximation ob-
tained for the finest possible resolution will yield a good
estimate of the f (a) spectrum corresponding to infinitely
fine resolution.

In this work we will study the effect of finite particle
size on box-counting construction of the f(a) spectrum.
We use a simple two-scaled Cantor set to model a finite
one-dimensional fractal with varying degrees of resolu-
tion, and we show how to obtain on each level of resolu-
tion the optimal f(a) approximation for both positive
and negative g. The approximations are compared with
the exact f (a) spectrum for the (infinite) Cantor set (cal-
culated below). The complication of noncentered boxes is
automatically eliminated by the choice of set construc-
tion; how to best avoid partially covered boxes for a gen-
eral experimental fractal image will be a subject of the
continued work.
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II. GENERAL FORMALISM

The starting point in the analysis of fractal objects,
such as aggregates, strange attractors, and other complex
sets, is the construction of a partition function I'. Divide
the set into N pieces with a size /; and a probability
weight p; of the ith piece. The partition sum is then
given by*

N pd :
Trg=3 2L (1)

T
i=1 I

As I= max(l;)—0, three things may happen: () If
7>1(q), the partition sum diverges; (ii) if 7<7(q), the
partition sum becomes zero; only when (iii) 7=7(q), the
partition sum may approach a finite, nonzero value.
Thus, by requiring I'(7,q)=const, we define the relation
between 7 and g. The new dimensions 7(q) are simply re-
lated to the generalized dimensions D, through*

Hg)=(¢—1)D, . 2)

Now, assume the following scaling relation for the proba-
bility of the ith piece in the limit [ —0:

p; ~1% . &)

This relation defines the scaling index a;. The same scal-
ing relation may be found in many points, and all points
on the multifractal having the same scaling index are said
to be a subfractal with a pointwise dimension ;. This
subfractal has the dimension f(a;). In other words, the
function f (@) can be interpreted as the Hausdorff dimen-
sion of the set of points with the same pointwise dimen-
sion a. For a simple fractal, e.g., a self-similar object like
a one-scaled Cantor set (not multifractal) f(a)=D, for
a=D,, and zero elsewhere, whereas for a multifractal a
assumes values over an interval and f(a) is a continuous
function on this interval. If we now divide the system
into pieces of size / and express the partition sum (1) as
an integral over a, we get

D(r,9)=1"" [ da'p(a’)199=/1@) @

where da'p(a’)l ~/'®) is the number of times o’ assumes
a value in the interval [a',a'+da']. In the limit /[ —O0,
the dominant contribution to the integral is received
when the exponent ga’—f(a') is close to its minimum
value, so we perform a saddle-point approximation

d ’ ’ w—
w[qa —f(@)]y=oyp=0- (5)

This leads to the following Legendre transformation,*
which is used to determine f (a):

dr _

g a, (6)

q)=aq—f, (7)
2

%<0 . 9)
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From Egs. (8) and (9) we note that the f (a) spectrum is a
convex function with a slope g in each dense point. As
q— oo the largest p; (i.e., the most concentrated part of
the multifractal) dominates the partition sum. This cor-
responds to a point where the f(a) curve vanishes with
infinite slope, and where a has its minimum value. As
g— — oo the smallest p; dominates and at the corre-
sponding maximum « value the f(a) curve vanishes with
negative infinite slope. We also note that the maximum
value of f(a) is equal to the Hausdorff dimension since
f (@) has its maximum for ¢ =0 and Dy = —7(0).

III. EXACT RESULTS FOR TWO-SCALED RECURSIVE
SETS

If a measure is constructed from an exact recursive
rule, one can easily determine its 7(g), D,, and f (a) spec-
trum. Suppose that the measure is generated by the fol-
lowing process. Start with the original region with mea-
sure one and size one. Divide the region into pieces of
two sizes and probabilities, where N of them are nonemp-
ty. Let n; denote the number of pieces of length /, and
n, the number of length /,. Further, let the respective
probabilities be p, and p,. At this first level the partition
sum is given by

q q
F1=n1p—,‘+n2£§ , (10)
1 2

where n;+n,=N. To get the next level of the set, each
piece is further divided into N nonempty pieces. At this
second level the partition sum will be

2 2

q
2y =r2.

I

9 pq
+2n,n21;—711;—3+n§
1 42

12

=2
Fy=nj I
2

We now see that the first partition function will generate
all the others and ', =T']. For this reason I'; is called a
generator for the set.’ If the probabilities are normalized
(nypy+nyp,=1), then 7(q) is defined through
I',(g,7)=1. This gives us the following equation (which
can be solved numerically) for determining 7(q):
q q
n,gfl—+n2—p—2= . (12)
I 3 :

If we for simplicity choose the lengths /; and I, such that
I,=L and I,=I1=L? and the probabilities to be propor-
tional to the corresponding box size, ie., p;=L?%/
(nL%+n,L*) and p, =L‘2d/(n1Ld+n2L2d), where d is
the geometrical (Euclidean) dimension of the set, we can
rewrite Eq. (12) as a second-order equation in L9~
The solution to this equation gives

1 [y,
=dg ——— , 13
7(q)=dq oL In o, (13)
where
y=n,L%n,L% . (14)

From the relation (2) the whole spectrum of generalized
dimensions is known as well. In particular, the values of
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D_,=a,,,and D  =a,,; are given by
In,
—y_Iny Py
Do 2L 2L (15)
and
Iny _ Inp,
D =d——%4—=—2
* InL InL (16
Equations (6) and (7) give us the f (a) spectrum
q 2n
a(q):d_yllzy 2 q 22 PNV
nL ni+4n,yi—n,(n1+4n,79)
(17)
1 (n%+4n2?’q)1/2—n1
=—1
flalq)) oL o,
1 2gn,y?Iny (18)
InL n?+4n,y9—n,(n}+4n,y9172 "’
For the Cantor set in Fig. 1 we have
1 1 [1+4(2)9]'2—1
— qg+—1 :
and
Int
D_, =T—‘—O 7925. . (20)
In2
D, ,=-—=0.5850... . (21)
In; :

In Fig. 2 we show D, and the f(a) spectrum for this
Cantor set. The Hausdorff dimension is

In[(V'5+1)/ 2] _
In2
The value (V'5+1)/2 is the golden mean.

Another soluble example with /;=I3 is the two-
dimensional multifractal in Fig. 3. This set is constructed

Dy= =0.6942. . . . (22)

n=0
L,P 1
P n=1
12p? L1, Pp ILpp  12p?
— — n=
2 p 12,3
—— — — e e = 0=3
— - -—— - -——- e - D=4

i

IG. 1. A Cantor set construction with two rescalings
Iy=L=3 and I,=I=1 and respective probability rescalings
p=P= 3 and p, —p-—% The division of the set continues
self-sxmllarly.
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FIG. 2. D, and the f(«a) spectrum for the two-scaled Cantor
set in Fig. 1. The zeros of f are @, ~0.5850 and a,,,, ~0.7925,
see text.

by the following rule. Start with a square and divide it
into 16 pieces. Remove all pieces except the four in the
middle, which now form a large square, and the four
squares in the corners. Then continue the procedure and
divide each of the five squares into five new ones, and so
on. For this object y=1,d =2,n;=1,and n,=4. D, is

FIG. 3. Example of a two-dimensional fractal with two re-
scalings. The fractal object is shown on level 4.
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then given by
1 1 (14+16X279)1/2—1
—_—— + _
D=7 |Mt ! 8 ’
(23)
and the f (a) spectrum by
8X274
alg)=2— (24)
B 1+16X29—(1+16X279)172
8qg X271
(alq))=
) = e = (1 + 16 X2 )2
1 1+16X279—(1+16X279)!/2
———1In
n2 8
25)

The function 7(g) is shown in Fig. 4, while D, and the
f(a) spectrum are shown in Fig. 5. We can use Eq. (10)
in order to understand the shape of 7(¢). Suppose p; <p,
(I,<1,) and let g— — co. Then the first term will dom-
inate, i.e.,

IT—npi (26)
and
Inn;+qInp,

nl, =¢D_.—f-o 27

(q)—
by definition. Here f_, =f(a(—»)). For g— o the
second term in Eq. (10) dominates and

Inn, +qlnp,

(q)— inl,

gD, —fo - (28)
We now see that the function 7(q) has two asymptotes
with slopes D , =a,;, and D _ , =a,,,, Which cross the 7
axis at f, and f_, respectively. We also know that
7(1)=0 and 7(0)=—Dy=—f.x- Explicitly, we get for
the two limits of a

Int

D_,

N |w

(29)

" In

ENES

20.0 F T T T
10.0 } -

7(q)
-10.0 F -
-20.0 F e

-30.0

T
1

-20.0 -10.0 0.0

q

10.0 20.0

FIG. 4. 7(q) for the two-dimensional fractal in Fig. 3.
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FIG. 5. D, and f(a) for the two-dimensional fractal in
Fig. 3.

and
1

D, ,=—=1, 30
«=Tl (30)

and the Hausdorff dimension for this fractal is given by

_ In[(V17—1)/8]

D =
0 In2

=1.3570... . (31)

Furthermore, one gets the following limits of f:

fow=: In 1 (32)
and
—_Inl _
few= Inl 0. . (33)

IV. BOX COUNTING

Box counting is maybe the simplest and the most com-
mon method to calculate D, and the f (a) spectrum fora
general multifractal. When using box counting we divide
the d-dimensional objects into boxes, all with the same
size 19, i.e., [;=1for all i.

Let N be the total number of nonempty boxes, M the
total number of particles (the total mass) and N; the total
number of measures (particles) in the ith box. Then
p;=N;/M. Further suppose that the probabilities are



i
¥

41 FINITE-SIZE EFFECTS ON THE CHARACTERIZATION OF . . . 1859

normalized to give I'(7,q)=1. We then obtain the fol-

“lowing partition sum:

N
L(r,q)=1""3,

i=1

N, |*
ﬁ] =1. (34)

By taking the logarithm of the partition sum we find the

relationship between 7 and g,
N ks
— 1 (35)

T(q)=—1-ln >

Inl 2

and from Egs. (6) and (35) we get

dr _ 1 1 N

"l F 2
dg Inl S (N, /M =
i=1

2
2
Il
|

M

N; q1 Ni (36)
M n .

Having 7 and a as functions of g, we may now calculate
D, and f(a) from

flalg))=qalq)—71(q) 37
and

(q) 1

= fl =, —plaela—flalg]. (38)
If the N, are allowed to take fractional values, we see that
there will be problems for large negative g; the sum above
may be totally dominated by any small N; and will get a
value which strongly depends on the position of the grid.

V. EXACT BOX COUNTING ON A FINITE SET

We will now discuss box counting on different levels of
the Cantor set in Fig. 1; the levels n €[0,n,]CN of the
Cantor set will be used to model images with resolutions
47" for a fractal object whose finest resolution (e.g., parti-

cle size in an aggregate) is 4 " On a certain level of
resolution, the resolution is given by the size of the small-
est observable (coverable) object and defines the size of
the particles out of which the remaining parts of the ob-
ject are built. Only fully covered particles should be
counted; partially covered particles must be excluded in
order to avoid terms that blow up for large negative g.
For the simple Cantor set being considered, it is easy to
find explicit functions 7(q), D,, and an f () spectrum on
any finite resolution level n of the set and with any box
length I =2""*™ where m €[ —n,n] labels the size of
the boxes on each resolution level. In Fig. 6, a fractal im-
age with a resolution 473 is modeled by level 3 of the
Cantor set. The relevant set of (nonempty) boxes needed
to cover this object is also shown in the figure. For a
given resolution level n, there are 2n different box parti-
tions with box lengths 2=ntm = —p —n+1,...,n.
On each box level m one gets a spectrum of n —|m|+1
different probability measures. Up to box level m =0,
there are no finite size effects. If 0<m <n, some boxes
cover parts of the large sized objects consisting of many
particles; these boxes thus have a uniform and equal mea-
sure. If m =n, all boxes contain the same measure and a
further subdivision of the boxes will yield no further in-

m=-3
2 Al
1 — — —_—
0 e —_— —t
1 —t—t — —_ —t —
2 —_— -
3 R HHH HHH H+H HH HHH
— — — — o wmwm  0=3

FIG. 6. A fractal with finite resolution given by level 3 of the
Cantor set in Fig. 1, together with the relevant box partitions.

formation.

The set of boxes can be constructed by a simple pro-
cedure. We have two types of boxes, L, covering parts of
the image with all of its length, and L', covering a hole
with its left half and parts of the image with its right half.
On the second level (m =—n +1) the set of (nonempty)
boxes can thus be represented by (L,L’). When we con-
struct the next level we note that the box L is divided into
two new pieces L and L’ (m <0), and L' turns into L; the
representation is (L,L',L). When m > 0 we have to
modify the rule since some of the boxes L are divided into

‘two equal parts L.

In order to construct the full box set and calculate the
probability measure in the boxes we use the operator T
and the generators L, and L; having the following prop-
erties:

TL,=PL,_,+pL;
TL;=L,_, k=1,...,n. (39)
TL,=2P 'pL,

Here P =2 and p =1 build up the probability measures.
We may now generate the probability distribution on any
box level m €[ —n,n] through

prtmp, , (40)

0.6
‘f(a) 0.4
0.2
0.0 1 . !
0.6 0.7 0.8
a

FIG. 7. Exact f(a) spectrum (thick line) compared with the
solutions from the box counting with different box sizes on reso-
lution level 16 (thin lines).
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by identifying the coefficient and probability measure
connected to each L, and L, (L, represents the initial in-
terval of length one) As an 111ustrat10n we write the dis-
tribution given by T*L; for the box level m =1 in Fig. 6

T*Ly=5P™pLy+2Pp°L) +p2L, . 41)

If we put the probability distribution generated by Eq.
(40) into the partition function Eq. (1), we get

() (n+ n+m
an =p(n+m)r 2 ni(m)(pi(m))q , (42)
i=|m|+m
where
P,'(m)=Pn+m_ip[(i+l)/2] . (43)
The square brackets here denote the integer part. The
coefficients n,-‘"') are given for m=-—n,...,n;
i =0, ...,n +m by the recursion relation
(m)— (m ”+6( (m— ”+28 —om n’ ms l)) , (44)
ny™"=1, n{™=0, i€[0,n+m]. 45)

The symbols ¢€; and §; in Eq. (44) are defined through

1, for i even
€= 0, fori odd ,
(46)
1, fori=0 ‘
8= [O, otherwise .

With the partition function known on any box level on
any level of resolution of the Cantor set, we can now con-
struct the scaling functions

1
(m)( )= — i (m)
™ (@) (n+m)in2 2™, “n
. T(m)(q)
(D{™), =;‘j , (48)
(m)
(m) = 1 2‘4
L . s(m 49)
f(m)(a(m) q))_qa(m)(q) (m)(q) , (50)
where

e on+
sm_" "5 (m) (m)\q
3, > n™Mpm,

i=|m|+m

z(m) = :nim
A

i=|m|+m

: (51)
ni(m)(pi(m))qln(pi(’m)) .

In Fig. 7.we show the exact f(a) curve and succes-
sive’ approximations f, ("')(a“”)) for n=16 and
m=0,1,2,...,15 [f{{ just gives a single point at
(D_,,D_,)] Note that the curves from the box-
counting calculation cross each. other. We observe that
_for large negative g, fi¢ (1 is the best approximation.
When decreasing the magnitude of |g|, the £ curve
crosses £ and becomes the best approximation. If we
continue to decrease |g/|, f{ crosses the f{% curve and
so on until f{? crosses f{L <1) The optimal box size there-
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FIG. 8. Exact f(a) spectrum compared with successive, op-
timal approximations on different levels of resolution. The thin
curves are fg, f1s and f3.

fore depends on the value of g. For positive g values,
is the most accurate approximation for all ¢, and the

curves £, m <0 will all be on the right-hand side of
(0)
16

The main conclusion of the above results is that if we
want to approximate f(a) for the Cantor set with box
counting at a finite level n, we should (i) let the envelope
of the curves f\"(a), m=0,1,...,n—1 approximate
f (a) for negative g, i.e., we select the left-most curve for
negative g values by calculating the crossing points of the
curves, and (ii) let £ a) approximate f (a) for all posi-
tive g. The optimal f (a) spectrum thus obtained, f,;(a),
is shown in Fig. 8 for n =8, 16, and 32 compared with
the exact curve. We have that lim, _, . f;=f.

To illustrate the convergence of the Hausdorff dimen-
sion we have in Fig. 9 plotted D as a function of the box
size on level 32. Note the fast convergence for small
boxes. The minimum of the curve is the best approxima-
tion of the Hausdorff dimension.. Also note that the exact
value of D _ , can be found by calculating D, with a box
size [ of the same size as the smallest interval in the set.

'(0)

0.80 — . ——
0.75 | -+ . -
Dy . '
.'w’"".'
0.70 S
1 1 1
0.0 0.1 0.2 0.3

FIG. 9. Successive approximations of the Hausdorff dimen-
sion D, plotted vs the box size / on level 32. The dashed line
represents the exact value.
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VI. CONCLUSIONS

We have used a Cantor set at finite levels to model a
finite fractal. The simple choice of length scales of the
Cantor set made it possible to find the generalized dimen-
sions and the spectrum of scaling indices analytically.
For this particular choice we have also been able to solve
the complete box-counting problem. By comparing the
box-counting solution with the exact one we find a rela-

tionship between the value of g and the size of the boxes
giving the most accurate result. For positive g, the best
result is obtained for a grid size equal to the size of the
largest connected object, i.e., the length scale where
finite-size effects begin to play a role. For negative g, the
influence of finite sizes is crucial for the determination of
the f(a) spectrum, such that all the way down to the
particle level of resolution, each partition level (box size)
gives a contribution in a corresponding g interval.
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